Abstract
We employ a special adaptive form of the Strongly Typed Genetic Programming (STGP)-based learning algorithm to develop trading rules based on a survival of the fittest principle. Employing returns data for the Russell 1000, Russell 2000 and Russell 3000 indices the STGP method produces greater returns compared to random walk benchmark forecasts, and the forecasting models are statistically significant in respect of their predictive effectiveness for all three indices both in- and out-of-sample. Using one-step-ahead STGP models to investigate the differences in return patterns between small and large stocks we demonstrate the superiority of models developed for small-cap stocks over those developed for large-cap stocks, indicating that small stocks are more predictable. We also investigate the relationship between trading volume and returns, and find that trading volume has negligible predictive strength, implying it is not advantageous to develop volume-based trading strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of International Financial Markets, Institutions and Money
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.