Abstract

The thermodynamic properties for bcc-Fe were predicted by combination of the first-principles calculations, the quasiharmonic approximation, the CALPHAD method and the Weiss molecular field theory. The hybrid method considers the effects of the lattice vibration, electron, intrinsic magnetism and external magnetic fields on the thermodynamic properties at finite temperature. Combined with experimental data, the calculated heat capacity without external magnetic fields was used to verify the validity of the hybrid method. Close to the Fermi level the high electronic density of states leads to a significant electronic contribution to free energy. Near the Curie temperature lattice vibrations dominant the Gibbs free energy. The order of the other three excitation contributions to Gibbs free energy from high to low is: intrinsic magnetism > electron > external magnetic fields. The investigation suggests that all the excitation contributions to Gibbs free energy are not negligible which provides a correct direction for tuning the thermodynamic properties for Fe-based alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call