Abstract
3D model segmentation avails to skeleton extraction, shape partial matching, shape correspondence, texture mapping, shape deformation, and shape annotation. Many excellent solutions have been proposed in the last decade. How to efficiently evaluate these methods and impartially compare their performances are important issues. Since the Princeton segmentation benchmark has been proposed, their four representative metrics have been extensively adopted to evaluate segmentation algorithms. However, comparison to only a fixed ground-truth is problematic because objects have many semantic segmentations, hence we propose two novel metrics to support comparison with multiple ground-truth segmentations, which are named Similarity Hamming Distance (SHD) and Adaptive Entropy Increment (AEI). SHD is based on partial similarity correspondences between automatic segmentation and ground-truth segmentations, and AEI measures entropy change when an automatic segmentation is added to a set of different ground-truth segmentations. A group of experiments demonstrates that the metrics are able to provide relatively higher discriminative power and stability when evaluating different hierarchical segmentations, and also provide an effective evaluation more consistent with human perception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.