Abstract

I present new lower and upper bounds on the minimum probability of error (MPE) in Bayesian multihypothesis testing that follow from an exact integral of a version of the statistical entropy of the posterior distribution, or equivocation. I also show that these bounds are exponentially tight and thus achievable in the asymptotic limit of many conditionally independent and identically distributed measurements. I then relate the minimum mean-squared error (MMSE) and the MPE by means of certain elementary error probability integrals. In the second half of the paper, I compare the MPE and MMSE for the problem of locating a single point source with subdiffractive uncertainty. The source-strength threshold needed to achieve a desired degree of source localization seems to be far more modest than the well established threshold for the different optical super-resolution problem of disambiguating two point sources with subdiffractive separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.