Abstract

Glycolysis of poly(ethylene terephthalate), PET, waste using trimethylol propane (TMP), triethanolamine (TEA), diethylene glycol (DEG) and diethanolamine (DEA) was used to produce suitable hydroxy-oligomers for epoxy. The glycolyzed products were reacted with epichlorohydrine to prepare a series of di- and tetraglycidyl epoxy resins with different molecular weights. The glycolysis was carried out in presence of manganese acetate as a catalyst at normal and high pressure in presence and absence of xylene at 210 °C. The produced resins were cured with different mole ratios of 1-(2-amino ethyl) piprazine as curing agent at room temperature. The mechanical properties of the cured epoxy resins were evaluated. The chemical resistances of the cured resins were evaluated through salt spray resistance, hot water, solvents, acid and alkali resistance measurements. The data indicate that the cured epoxy resins based on glycolyzed oligomer of PET and DEA have excellent chemical resistances as organic coatings among other cured resins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.