Abstract
With the optional setting of multiple stepped collisional energies (NCEs), higher-energy collisional dissociation (HCD) as available on Orbitrap instruments is a widely adopted dissociation method for intact N-glycopeptides characterization, where peptide backbones and N-glycan moieties are selectively fragmented at high and low NCEs, respectively. Initially, a dependent setting of a central value plus minus a variation is available to the users to set up NCEs, and the combination of 30 ± 10% to give the energies 20%/30%/40% has been mostly adopted in the literature. With the recent availability of an independent NCEs setup, we found that the combination of 20%/30%/30% is better than 20%/30%/40%; in the analysis of complex intact N-glycopeptides enriched from gastric cancer tissues, total IDs with spectrum-level FDR ≤ 1%, site-specific IDs with site-determining fragment ions, and structure-specific IDs with structure-diagnostic fragment ions were increased by 42% (4,767 → 6,746), 57% (599 → 942), and 97% (1771 → 3495), respectively. This finding will benefit all the coming N-glycoproteomics studies using HCD as the dissociation method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.