Abstract

Abstract A new low cycle fatigue criterion is presented based on the stored energy, which accumulates in the material’s microstructure during fatigue loading. The new damage parameters are based on the assumption that only the stored part of the introduced energy causes the changes in the microstructure, while the other part does not contribute to the fatigue process. Moreover the dissipated part may depends on the fatigue conditions, especially on the strain rate, which could affect the lifetime prediction accuracy of the applied models. To demonstrate the prediction capability of the proposed model a comprehensive experimental work were conducted on two types of reactor pressure vessel structural material. Investigation on the fraction of plastic work dissipated to heat was carried out to provide information on thermo-mechanical behavior on the tested materials, which can be used as input parameters of the new model. Furthermore isothermal and thermo-mechanical low cycle fatigue tests were performed with in-service loading conditions. The result is higher prediction accuracy than by the classical strain amplitude and strain energy based approaches. The developed model may provide a useful analytical tool for the low cycle fatigue evaluation of reactor components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call