Abstract

The continuous reduction of chip size driven by the market demand has a significant impact on circuit design and assembly process of IC packages. Shrinking chip size and increasing I/O counts require finer bond pad pitch and bond pad size for circuitry layout. As a result, serious wire deflection during transfer molding process could make adjacent wires short, and this issue becomes more critical as a smaller wire diameter has to be applied for the finer pitch wire bonded IC devices. This paper presents a new encapsulation process development for 50 μm fine pitch plastic ball grid array package. Since reduced wire diameter decreases the bending strength of bonded wires significantly, wire deflection during molding process becomes quite serious and critical. Experiments on conventional transfer molding were conducted to evaluate wire span threshold with 23.0 μm diameter gold wire. The results show that the wire span threshold is about 4.1 mm, which is much shorter than the wire span threshold of over 5.0 mm for wire with 25.4 μm diameter. Finite element analysis shows there is a significant difference in the wire deflection between 23.0 μm gold wire and 25.4 μm gold wire diameter under the same action of mold flow. A novel encapsulation method is introduced using non-sweep solution. The wire span could be extended to over 5.0 mm with wire sweep less than 1%. Reliability tests conducted showed that all the units passed 1000 temperature cycles (−55 to 125 °C) with JEDEC moisture sensitivity level 2a (60 °C/60% relative humidity for 120 h) and 3 times reflow (peak temperature at 220–225 °C). It is believed that this solution could efficiently overcome the risk of wire short issues and improve the yield of ultra fine pitch wire bonds in high-volume production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call