Abstract

Knowing soil hydraulic properties is essential to support soil use and management practices; however, their measuring is commonly expensive and time-consuming. Thus, pedotransfer functions (PTFs) have been used to quantify physical properties such as the soil water retention curve (SWRC). SWRC relates the volumetric soil water content (θ) as a function of the matric potential (h) and plays a vital role in soil hydraulic modeling. Point-PTFs estimate key-points of the SWRC, often from measured texture, bulk density, and organic matter. This study aimed to formulate new point-PTFs to estimate θ(h) data ranging from θ(-0.1 m) to θ(-150 m) to be applied in subtropical, tropical and temperate soils. The PTF equations were derived from linear and non-linear regressions of measured soil physical properties against to the water retention data. The prediction performance of the new-formulated PTFs overcame the performance of already existing and widely-known PTFs recognized in the literature and can be, therefore, applied in soil water retention topics under a wider textural range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.