Abstract

Abstract. This paper investigates the existing stiffness equations for corner-filleted flexure hinges. Three empirical stiffness equations for corner-filleted flexure hinges (each fillet radius, r, equals to 0.1 l; l, the length of a corner-filleted flexure hinge) are formulated based on finite element analysis results for the purpose of overcoming these investigated limitations. Three comparisons made with the existing compliance/stiffness equations and finite element analysis (FEA) results indicate that the proposed empirical stiffness equations enlarge the range of rate of thickness (t, the minimum thickness of a corner-filleted flexure hinge) to length (l), t/l (0.02 ≤ t/l ≤ 1) and ensure the accuracy for each empirical stiffness equation under large deformation. The errors are within 6% when compared to FEA results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.