Abstract

New results on the study of radiation effects in solid nitrogen and N2-doped Ne matrix are presented, with a focus on the so-called γ-line origin. The irradiation was carried out in dc regime with an electron beam of subthreshold energy. The relaxation dynamics was monitored by emission spectroscopy: cathodoluminescence (CL) and nonstationary luminescence (NsL), along with current activation spectroscopy. Thermally stimulated luminescence (TSL) and exoelectron emission (TSEE) of pure nitrogen and N2 in the Ne matrix were measured in a correlated manner. Three emission bands were recorded in the NIR CL spectra of solid N2: 794, 802, and 810 nm. The band at 810 nm was detected for the first time. These three bands are characterized by similar behavior and form molecular series with spacing between adjacent vibrational energy levels of the ground state of 125 and 123 cm−1. These data cast doubt on the recently made assumption that the γ-line is attributed to the emission of the nitrogen anion N− [R. E. Boltnev, I. B. Bykhalo, I. N. Krushinskaya et al. Phys. Chem. Chem. Phys. 18, 16013 (2016)]. The processes of electron attachment and neutralization of positively charged species are discussed. It has been established that the γ-line in the TSL spectra of pure nitrogen and N2-doped Ne matrix correlates with TSEE currents and recombination emission of O+, N2+, and N4+ ions, which indicates its connection with the neutralization reaction. The measurement of NsL supported this conclusion. A new possible assignment of the γ-line and its satellites to the emission of tetranitrogen N4 is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call