Abstract
Thermally activated delayed fluorescent (TADF) materials capable of efficient solution-processed non-doped organic light-emitting diodes (OLEDs) are of important and practical significance for further development of OLEDs. In this work, a new electron-donating segment, 2,7-di(9H-carbazol-9-yl)-9,9-dimethyl-9,10-dihydroacridine (2Cz-DMAC), was designed to develop solution-processable non-doped TADF emitters. 2Cz-DMAC can not only simultaneously increase the solubility of compounds and suppress harmful aggregation-caused quenching, but also efficiently broaden the delocalization of the highest occupied molecular orbital and promote the reverse intersystem crossing process. Three new TADF emitters, 2-(2,7-di(9H-carbazol-9-yl)-9,9-dimethylacridin-10(9H)-yl)dibenzo[b,d]thiophene 5,5-dioxide (2Cz-DMAC-BTB), 2-(2,7-di(9H-carbazol-9-yl)-9,9-dimethylacridin-10(9H)-yl)-9H-thioxanthen-9-one (2Cz-DMAC-TXO), 2-(2,7-di(9H-carbazol-9-yl)-9,9-dimethylacridin-10(9H)-yl)thianthrene 5,5,10,10-tetraoxide (2Cz-DMAC-TTR), were developed by using 2Cz-DMAC segment as the electron-donor. As anticipated, the solution-processed non-doped OLEDs employing 2Cz-DMAC-BTB, 2Cz-DMAC-TXO and 2Cz-DMAC-TTR as the emitters respectively exhibited green, orange and red emissions with maximum external quantum efficiencies of 14.0%, 6.6% and 2.9%. These results successfully demonstrate the feasibility and convenience of developing efficient solution-processable non-doped TADF emitters based on 2Cz-DMAC segment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.