Abstract
In this paper, three new families of eighth-order iterative methods for solving simple roots of nonlinear equations are developed by using weight function methods. Per iteration these iterative methods require three evaluations of the function and one evaluation of the first derivative. This implies that the efficiency index of the developed methods is 1.682, which is optimal according to Kung and Traub’s conjecture [7] for four function evaluations per iteration. Notice that Bi et al.’s method in [2] and [3] are special cases of the developed families of methods. In this study, several new examples of eighth-order methods with efficiency index 1.682 are provided after the development of each family of methods. Numerical comparisons are made with several other existing methods to show the performance of the presented methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.