Abstract

AbstractSET‐LRP is mediated by a combination of solvent and ligand that promotes disproportionation of Cu(I)X into Cu(0) and Cu(II)X2. Therefore, the diversity of solvents suitable for SET‐LRP is limited. SET‐LRP of MA in a library of solvents with different equilibrium constants for disproportionation of Cu(I)X such as DMSO, DMF, DMAC, EC, PC, EtOH, MeOH, methoxyethanol, NMP, acetone and in their binary mixtures with H2O was examined. H2O exhibits the highest equilibrium constant for disproportionation of Cu(I)X. The apparent rate constant of the polymerization exhibits a linear increase with the addition of H2O. This is consistent with higher equilibrium constants for disproportionation generated by addition of H2O to organic solvents. Furthermore, with the exception of alcohols and carbonates, the rate constant of polymerization in binary mixtures could be correlated with the Dimroth‐Reichardt solvent polarity parameter. This is consistent with the single‐electron transfer mechanism proposed for SET‐LRP that involves a polar transition state. These experiments demonstrate that the use of binary mixtures of solvents with H2O provides a new, simple and efficient method for the elaboration of a large diversity of reaction media that are suitable for SET‐LRP even when one of the two solvents does not mediate disproportionation of Cu(I)X. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5577–5590, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.