Abstract
In this study, a new fuzzy system structure that reduces the number of inputs is proposed for dynamic system identification applications. Algebraic fuzzy systems have some disadvantages due to many inputs. As the number of inputs increase, the number of parameters in the training process increase and hence the classical fuzzy system becomes more complex. In the conventional fuzzy system structure, the past information of both inputs and outputs are also regarded as inputs for dynamic systems, therefore the number of inputs may not be manageable even for “single input and single output” systems. The new dynamic fuzzy system module (DFM) proposed here has only a single input and a single output. We have carried out identification simulations to test the proposed approach and shown that the DFM can successfully identify non-linear dynamic systems and it performs better than the classical fuzzy system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.