Abstract

Asthma represents a profound worldwide public health problem. The most effective anti-asthmatic drugs currently available include inhaled β2-agonists and glucocorticoids and control asthma in about 90-95% of patients. The current asthma therapies are not cures and symptoms return soon after treatment is stopped even after long term therapy. Although glucocorticoids are highly effective in controlling the inflammatory process in asthma, they appear to have little effect on the lower airway remodelling processes that appear to play a role in the pathophysiology of asthma at currently prescribed doses. The development of novel drugs may allow resolution of these changes. In addition, severe glucocorticoid-dependent and resistant asthma presents a great clinical burden and reducing the side-effects of glucocorticoids using novel steroid-sparing agents is needed. Furthermore, the mechanisms involved in the persistence of inflammation are poorly understood and the reasons why some patients have severe life threatening asthma and others have very mild disease are still unknown. Drug development for asthma has been directed at improving currently available drugs and findings new compounds that usually target the Th2-driven airway inflammatory response. Considering the apparently central role of T lymphocytes in the pathogenesis of asthma, drugs targeting disease-inducing Th2 cells are promising therapeutic strategies. However, although animal models of asthma suggest that this is feasible, the translation of these types of studies for the treatment of human asthma remains poor due to the limitations of the models currently used. The myriad of new compounds that are in development directed to modulate Th2 cells recruitment and/or activation will clarify in the near future the relative importance of these cells and their mediators in the complex interactions with the other pro-inflammatory/anti-inflammatory cells and mediators responsible of the different asthmatic phenotypes. Some of these new Th2-oriented strategies may in the future not only control symptoms and modify the natural course of asthma, but also potentially prevent or cure the disease.

Highlights

  • Asthma represents a profound worldwide public health problem

  • The future therapies will need to focus on the 510% patients who do not respond well to these treatments and who account for ∼50% of the health care costs of asthma [1,2]

  • Glucocorticoids are highly effective in controlling the inflammatory process in asthma, they appear to have little effect on the lower airway remodelling processes that appear to play a role in the pathophysiology of asthma at currently prescribed doses

Read more

Summary

Introduction

Asthma represents a profound worldwide public health problem. The most effective anti-asthmatic drugs currently available include inhaled β2-agonists and glucocorticoids and control asthma in about 90-95% of patients. This leads to sequestration of lymphocytes in secondary lymphatic tissues and away from inflammatory lesions Both Th1 and Th2 cells express a similar pattern of FTY720-targeted S1P1Rs. The inhibitory effect of FTY720 on airway inflammation, airway hyperresponsiveness, and goblet cell hyperplasia in an animal model of asthma, suggests a potential role of this compound in the treatment of asthma [102]. In an animal model of asthma a single application of this STAT1 decoy oligonucleotides significantly reduces airway hyperresponsiveness, the number of BAL eosinophils and lymphocytes and the BAL level of IL-5 [119] This decoy oligonucleotides designated AVT-01 is currently undergoing phase II studies in asthmatic patients (http:// www.avontec.de). In an animal model of asthma niflumic acid, a relatively specific blocker of calcium-activated chloride channel, inhibits IL-13-induced goblet cell hyperplasia, MUC5AC expression, airway hyperresponsiveness, BAL eosinophilia and eotaxin increase.

Conclusions
Global Initiative for Asthma
51. Barnes PJ
Findings
90. Norman P
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call