Abstract

AbstractIn a seminal STOC’95 paper, Arya et al. conjectured that spanners for low-dimensional Euclidean spaces with constant maximum degree, hop-diameter O(logn) and lightness O(logn) (i.e., weight \(O(\log n) \cdot w(\textsf{MST}))\) can be constructed in O(n logn) time. This conjecture, which became a central open question in this area, was resolved in the affirmative by Elkin and Solomon in STOC’13 (even for doubling metrics).In this work we present a simpler construction of spanners for doubling metrics with the above guarantees. Moreover, our construction extends in a simple and natural way to provide k-fault tolerant spanners with maximum degree O(k 2), hop-diameter O(logn) and lightness O(k 2 logn).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.