Abstract

In this paper, we have successfully prepared ethylene–propylene-diene monomer (EPDM)/TiC composites as thermistors, with new double negative and positive temperature coefficients of conductivity (NTCC/PTCC). EPDM composites loaded with 50 phr HAF carbon black and different concentrations of TiC were prepared. This study focuses on the effect of TiC content on the vulcanization process, the network structure and the electrical and thermal properties of EPDM/TiC composites. The effect of TiC on the network structure was evaluated e.g. the curing process, the characteristic time constant during vulcanization, the volume fraction of rubber, gel fraction, interparticle distance between conductive particles, the extent of TiC reinforcement in the rubber matrix and molecular weight between cross-linking through experimental and affine–phantom models. The effects of TiC content on the percolation theory, electrical conductivity, conducting mechanism of conductivity, conducting hysteresis and I– V characteristics were also studied, as well as its TiC on the (NTCC/PTCC), thermoelectric power, dielectric constant and thermal conductivity. Stability and reproducibility of the thermal cycles for heating element applications was tested. Specific heat and the amount of heat transfer by radiation and convection as a function of TiC content was calculated using both the calorimetric technique and a theoretical model. It was proved that TiC improves the network structure, electrical and thermal properties of EPDM composites for practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call