Abstract

This paper presents the development of a new double integral inequality (II) with the motivation of yielding quadratic approximation. It is well known that approximating integral quadratic terms with quadratic terms involves a certain degree of conservatism. In this paper, a sufficient gap has been identified in the approximation of two recent IIs reported in the literature, thereby leading to the new double II. The developed inequality has been applied to access the stability of a linear retarded system to estimate a maximum delay upper-bound. Furthermore, a mathematical relationship of the new double II with existing inequalities is discussed to show that the developed inequality is more general, effective and bears less computational burden. Four numerical examples are given to validate the authors' claim with regard to the effective estimate of delay bound results for a linear retarded system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.