Abstract

Gallium nitride (GaN) nanowires anchored on the surface of cost-effective pencil graphite electrodes (PGEs) have been developed as a new disposable nitric oxide (NO) sensor through a hydrothermal method followed by annealing treatment. The as-obtained nanomaterials were examined by field emission scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and EIS. Concurrently, the electrocatalytic performance has been analyzed using cyclic voltammetry and amperometric measurements. The experimental results exhibit good electrochemical sensing performance toward the generated NO in NO2– with a wide linear detection range of 1.0 μM to 1.0 mM with a correlation coefficient of 0.999 and a detection limit of 0.180 μM. In addition, the GaN nanowire-modified PGE surface showed high selectivity for the detection of NO as compared to other relevant biomolecules. This confirms that the PGE/GaN nanowire is a new promising electrochemical sensor for the sensitive detection of NO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.