Abstract
Predicting carbon dioxide emissions is crucial for addressing climate change and achieving environmental sustainability. Accurate emission forecasts provide policymakers with a basis for evaluating the effectiveness of policies, facilitating the design and implementation of emission reduction strategies, and helping businesses adjust their operations to adapt to market changes. Various methods, such as statistical models, machine learning, and grey prediction models, have been widely used in carbon dioxide emission prediction. However, existing research often lacks comparative analysis with other forecasting techniques. This paper constructs a new Discrete Fractional Accumulation Grey Gompertz Model (DFAGGM(1,1) based on grey system theory and provides a detailed solution process. The Whale Optimization Algorithm (WOA) is used to find the hyperparameters in the model. By comparing it with five benchmark models, the effectiveness of DFAGGM(1,1) in predicting carbon dioxide emissions data for China and the United States is validated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.