Abstract

There is an urgent need for the discovery of carbon-neutral sources of energy to avoid the consequences of global warming caused by ever-increasing atmospheric CO2 levels. An attractive possibility is to use CO2 captured from industrial emissions as a feedstock for the production of useful fuels and precursors such as carbon monoxide and methanol. An active field of research to achieve this goal is the development of catalysts capable of harnessing solar energy for use in artificial photosynthetic processes for CO2 reduction. Transition-metal complexes are excellent candidates, and it has already been shown that they can be used to reduce CO2 with high quantum efficiency. However, they generally suffer from poor visible light absorption, short catalyst lifetimes, and poor reaction rates. In this Perspective, the field of photocatalytic CO2 reduction is introduced, and recent developments that seek to improve the efficiency of such catalytic processes are highlighted, especially CO2 reduction with supramolecules and molecular systems in supercritical CO2 (scCO2) or biphasic ionic liquid−scCO2 mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.