Abstract

The present paper will argue that, for too long, many nominalists have concentrated their researches on the question of whether one could make sense of applications of mathematics (especially in science) without presupposing the existence of mathematical objects. This was, no doubt, due to the enormous influence of Quine’s “Indispensability Argument”, which challenged the nominalist to come up with an explanation of how science could be done without referring to, or quantifying over, mathematical objects. I shall admonish nominalists to enlarge the target of their investigations to include the many uses mathematicians make of concepts such as structures and models to advance pure mathematics. I shall illustrate my reasons for admonishing nominalists to strike out in these new directions by using Hartry Field’s nominalistic view of mathematics as a model of a philosophy of mathematics that was developed in just the sort of way I argue one should guard against. I shall support my reasons by providing grounds for rejecting both Field’s fictionalism and also his deflationist account of mathematical knowledge—doctrines that were formed largely in response to the Indispensability Argument. I shall then give a refutation of Mark Balaguer’s argument for his thesis that fictionalism is “the best version of anti-realistic anti-platonism”.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.