Abstract

The framework of non-relativistic effective field theory (NREFT) aims to generalise the standard analysis of direct detection experiments in terms of spin-dependent (SD) and spin-independent (SI) interactions. We show that a number of NREFT operators lead to distinctive new directional signatures, such as prominent ring-like features in the directional recoil rate, even for relatively low mass WIMPs. We discuss these signatures and how they could affect the interpretation of future results from directional detectors. We demonstrate that considering a range of possible operators introduces a factor of 2 uncertainty in the number of events required to confirm the median recoil direction of the signal. Furthermore, using directional detection, it is possible to distinguish the more general NREFT interactions from the standard SI/SD interactions at the $2\sigma$ level with $\mathcal{O}(100-500)$ events. In particular, we demonstrate that for certain NREFT operators, directional sensitivity provides the only method of distinguishing them from these standard operators, highlighting the importance of directional detectors in probing the particle physics of dark matter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call