Abstract

AbstractDramatic recent progress in understanding galactic chemical evolution (GCE) has been driven partly by direct observations of the distant past with HST and JWST and partly by archeaological interpretation of stellar abundances from giant high-resolution spectroscopic surveys (APOGEE, GALAH) and the complementary power of Gaia astrometry and photometry. Focusing on archaeology, I give a rapid-fire, and I hope synthesizing, review of work my collaborators and I have done on theoretical modeling and observational interpretation. I discuss (1) the interleaved but distinguishable roles of stellar scale astrophysics and galactic scale astrophysics in governing GCE, (2) the use of abundance ratio trends to empirically infer nucleosynthetic yields, (3) the uncertainty in the overall scale of yields and its degeneracy with the importance of galactic outflows, (4) the emergence of equilibrium in GCE, (5) the dimensionality of the stellar distribution in chemical abundance space, and (6) insights from chemical abundances on the early history of the Milky Way, including measurements of the intrinsic scatter of abundance ratios in metal-poor stars (-2≤[Fe/H] ≤-1) suggesting that a typical halo star at this metallicity is enriched by the products of N∼50 supernovae mixed over ∼105M⊚ of star-forming gas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.