Abstract

The Gompertz function was formulated to represent an actuarial curve, yet it often fits growth of organisms, organs and tumors. Despite numerous attempts, no consensus has been forged about the biological foundation of the broad applicability of the model. Here we revisit the Gompertzian notion of the โ€œpower to growโ€ and equate it with growth fraction. Aside from conferring biological interpretability to the model, this approach allows leading to the possibility of exploring the behavior of Gompertzian growth with fractal kinetics. Significantly, we found that empirical models such as the logistic model, the von Bertalanffy model and the von Bertalanffy Richards model, together with the originative Gompertz model, are special cases of Gampertzian growth in fractal space. This finding permits an analysis of the growth kinetics of tumors which might affect model based design of Chemotherapy protocols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.