Abstract
Abstract Drilling wells with minimum risk and optimizing well placement with the least possible cost are key goals that companies strive to achieve. The major contributor to the successful execution of the well is the quality of the drilling program. Well design is a complex process, which requires full collaboration of multiple domain roles & expertise working together to integrate various well-planning data. Many design challenges will be encountered, such as risk assessments, domain-specific workflows, geological concerns, technology selections, cost & time estimation, environmental and safety concerns. Design process efficiency depends on effective communication between parties, quickly adapting to any changes, reducing the number of changes, and reducing complicated & manual processes. Current existing workflow and tools are not promoting an excellent collaborative environment among the different roles involved. Engineers utilize multiple engineering applications, which involved many manual data transfers and inputs. The different party is still working in a silo and sharing the design via email or other manual data transfer. Any changes to the design cause manual rework, leading to inconsistency, incoherency, slow decision & optimization process, and failure to identify all potential risks, increasing the well planning time. The new digital planning solution based on cloud technology allows the design team to maximize the results by giving them access to all the data and science they need in a single, standard system. It's a radical new way of working that gives engineers quicker and better-quality drilling programs by automating repetitive tasks and validation workflows to ensure the entire plan is coherent. This new planning solution allows multiple roles & domain collaboration to break down silos, increase team productivity through tasks assignment, and share all data. An automated trajectory design changes the way engineers design trajectory from manually connecting the path from a surface location to the target reservoir location to automatically calculate & propose multiple options with various KPIs allowing the engineer to select the best trajectory option. The system reinforces drilling program quality through auto engineering analysis, which provides quick feedback for any design changes and provides an integrated workflow from the trajectory design to operational activity planning and AFE. The automation of repetitive tasks, such as multiple manual inputs, frees domain experts to have more time to focus on creating new engineering insights while still maintaining design traceability to review updates over the life of the projects and see how the design changes have optimized the drilling program. This new solution solves some of the significant challenges in the current well-planning workflow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.