Abstract

AbstractAs an alternative to conventional charge-separation functional molecular models based on multi-step long-range electron transfer (ET) within redox cascades, simple donor-acceptor dyads have been developed to attain a long-lived and high-energy charge-separated (CS) state without significant loss of excitation energy. In particular, a simple molecular electron donor-acceptor dyad, 9-mesityl-10-methylacridinium ion (Acr+-Mes), is capable of fast charge separation but extremely slow charge recombination. Such a simple molecular dyad has significant advantages with regard to synthetic feasibility, providing a variety of applications for photoinduced ET catalytic systems, including efficient photocatalytic systems for the solar energy conversion and construction of organic solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.