Abstract

Potassium fluoroboratoberyllate KBe2BO3F2 (KBBF) has been revealed theoretically and experimentally as a novel ultraviolet nonlinear optical crystal, but it is found to be very difficult to grow in a large size, because of the weak binding interaction between the (Be2BO3)∞ units, which leads to an apparent layer habit in the growth. By using a molecular engineering approach, oxygen bridges when brought in to strengthen the binding between the infinite units are found to be useful to overcome the above shortcoming of KBBF, and in the light of it another new ultraviolet nonlinear optical crystal—strontium boratoberyllate Sr2Be2B2O7 (SBBO) has been discovered. The linear optical properties of SBBO are similar to KBBF’s, but its nonlinear optical properties are better than that of the latter. d22(SBBO)≂d22(β-BaB2O4), which is two times higher than d11 of KBBF. SBBO has very good mechanical properties, and it is also not deliquescent. So SBBO is expected to have great potential for the application in ultraviolet nonlinear optical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.