Abstract

Introduction Combination antiretroviral therapy (cART) has dramatically reduced morbidity and mortality of HIV-1-infected patients. Integrase strand transfer inhibitors (INSTIs) play an important role as a key drug in cART. The second-generation INSTIs are very potent, but due to the emergence of highly resistant viruses and the demand for more conveniently usable drugs, the development of “third-generation” INSTIs and mechanistically different inhibitors is actively being pursued. Areas covered This article reviews the patents (from 2018 to the present) for two classes of HIV-1 integrase inhibitors of INSTIs and integrase-LEDGF/p75 allosteric inhibitors (INLAIs). Expert opinion Since approval of the second-generation INSTI dolutegravir, the design of new INSTIs has been mostly focused on its scaffold, carbamoylpyridone (CAP). This CAP scaffold is used not only for HIV-1 INSTIs but also for drug discoveries targeting other viral enzymes. With the approval of cabotegravir as a regimen of long-acting injection in combination with rilpivirine, there is a growing need for longer-acting agents. INLAIs have been intensely studied by many groups, but have yet to reach the market. However, INLAIs have recently been reported to also function as a latency promoting agent (LPA), indicating further development possibilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call