Abstract

Although polymeric anion exchange resins can remove phosphonates, they lack selectivity for target phosphonates and are susceptible to interference by anions and other substances. Here, we developed a novel strategy via confining MIL-101(Fe)-NH2 inside commercial resins IRA-900 for high-efficient and precise phosphonate removal, accompanying with the improvement of the stability and recovery of MIL-101(Fe)-NH2. The obtained nanocomposite MIL-101(Fe)-NH2@IRA-900 (MFNI) exhibited significantly enhanced phosphonate removal in the presence of competing anions (Cl−, SO42−, NO3− and CO32−) and natural organic matter (humic acid) at high concentrations (2–4 times of phosphonate concentration). Moreover, MFNI displayed the highest phosphonate adsorption capacity (12.9 mg P/g) and the fastest adsorption kinetics (120 min) than hydrated ferric oxides modified IRA-900 (HFOI) (6.7 mg P/g, 180 min), MIL-101(Fe)-NH2 (7.6 mg P/g, 240 min) and IRA-900 (5.6 mg P/g, 360 min). Such higher adsorption affinity and anti-interference ability came from the synergistic effect of the host IRA-900 (hydrogen-bond interaction and electrostatic attraction) and the embedded MIL-101(Fe)-NH2 (ligand exchange). The depleted MFNI could be regenerated with a binary NaOH-NaCl solution and reused without significant loss of capacity. Column adsorption runs by using MFNI indicated the fresh MFNI could achieve 100 % removal of PPOA in 10.5 h continuously feeding, which offered the possibility of achieving potential large-scale applications. In general, a new MOF-confined design approach was practiced to achieve selective elimination of phosphates and to improve the stability and recovery of MOF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call