Abstract

AbstractIn this paper, integrated 2D photonic crystal narrow band filter design is achieved based on transmission spectra shift. The presented effective technique for the design of narrow band resonant filters obtained by one-missing-row and by choosing proper radii of air holes of the waveguide is proposed. The 2D photonic crystals are designed by utilizing cascaded waveguides with different radii of air holes. The results are presented for normal incident wave with TE polarizations with a narrow spectral bandwidth centered at λ = 1.55 μm. We also discuss the filtering process and its necessary modifications to achieve efficient filtering. A final synthesized filter topology is presented and a band from 1.53 μm to 1.57 μm around 1.55 μm is transmitted with a maximum transmission of about 77% with better performances is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.