Abstract

The correlation between solid propellant grain configuration and burning surface area profile is a complicated nonlinear problem. Nonlinear optimization has been adopted to design grain configurations that satisfied the objective area profiles. However, as conventional design methods are impractical, with limited performance, it is necessary to investigate alternatives. Useful information for grain design can be obtained by analyzing the aforementioned correlation. However, this aspect has not been studied owing to the requirement of large amounts of data and analysis techniques. In this study, machine learning was used to develop a new design method. The objective of machine learning was to train a model to classify classes of data. The database stores various sets of configuration variables and their classes. The proposed Gaussian kernel-based support vector machine model predicts the class of newly designed grains. The results verified that the model accurately predicted the class of the set of configuration variables and can be used to modify the set of configuration variables to satisfy the requirement. Thus, it was confirmed that machine learning is an appropriate approach to grain design; however, further research is needed to analyze its practicality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.