Abstract
Carnosine (β-alanyl-l-histidine) is an endogenous dipeptide, extensively studied owing to its multifunctional activity exhibited in tissues of several animal species. This natural compound may act as a physiological buffer, ion-chelating agent (especially for copper(II) and zinc(II)), antioxidant and antiglycating agent. The main limit for the therapeutical uses of carnosine is the rapid hydrolysis mostly in human plasma by carnosinase. The chemical derivatization of carnosine is a promising strategy to improve the bioavailability of the dipeptide and facilitating the site-specific transport to different tissues. On this basis, a new carnosine derivative with biotin was synthesized and structurally characterized by NMR and MS measurements, with aim of exploiting the avidin–biotin technology that offers a universal system for selective delivery of any biotinylated agent. The stability of the new carnosine derivative towards the hydrolytic action of serum carnosinase as well as the copper(II) binding ability of the carnosine–biotin conjugate were also assessed. The binding affinity of the new molecular entity to avidin and streptavidin, investigated by a spectrophotometric assay, was exploited to functionalize avidin– and streptavidin–gold nanoparticles with the carnosine–biotin conjugate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.