Abstract
This paper studies the problem of stability analysis for discrete-time recurrent neural networks (DRNNs) with time-varying delays. By using the discrete Jensen inequality and the sector bound conditions, a new less conservative delay-dependent stability criterion is established in terms of linear matrix inequalities (LMIs) under a weak assumption on the activation functions. By using a delay decomposition method, a further improved stability criterion is also derived. It is shown that the newly obtained results are less conservative than the existing ones. Meanwhile, the computational complexity of the newly obtained stability conditions is reduced since less variables are involved. A numerical example is given to illustrate the effectiveness and the benefits of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.