Abstract
This work is concerned with the delay-dependent stability problem for uncertain impulsive neural networks (NNs) with additive time-varying delay components and leakage term. We construct a newly augmented Lyapunov–Krasovskii (L–K) functional which contains triple and four integral terms and then utilizing free-matrix-based integral inequality to bound the derivative of the Lyapunov–Krasovskii functional. Some sufficient conditions are derived to assure the delay-dependent stability of the impulsive NNs by the linear matrix inequality, which is less conservative than some existing results and can be readily verified by the convex optimization algorithms. In addition, some information of activation function ignored in previous works has been taken into account in the resulting condition. In the end, three numerical examples are provided to illustrate the effectiveness of the proposed criteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.