Abstract

This paper is concerned with the stability analysis problem for a class of delayed stochastic recurrent neural networks with both discrete and distributed time-varying delays. By constructing a suitable Lyapunov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions to ensure the global, robust asymptotic stability for the addressed system in the mean square. The conditions obtained here are expressed in terms of LMIs whose feasibility can be checked easily by MATLAB LMI Control toolbox. In addition, two numerical examples with comparative results are given to justify the obtained stability results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.