Abstract
The ability to predict passenger flow in transport networks is an important aspect of public transport management. It helps improve transport services, aids those responsible for management to obtain early warning signals of emergencies and unusual circumstances and, in general, makes cities smarter and safer. This paper develops a long short-term memory-based (LTSM-based) deep learning model to predict short-term transit passenger volume on transport routes in Istanbul. This prediction model has been created using a dataset that included the number of people who used different transit routes in Istanbul at one-hour intervals between January and December 2020. The proposed multilayer LSTM-based deep learning model has been compared with popular models such as random forest (RF), support vector machines, autoregressive integrated moving average, multilayer perceptron, and convolutional neural network. The experimental findings showed that the proposed multilayer LSTM-based deep learning model outperformed the other models with regard to prediction for each transfer route. Furthermore, RF, one of the machine learning models used, produced remarkably successful results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.