Abstract

A new molecular data structure and molecular structure operation algorithms are proposed for general purpose molecular design. The data structure allows for a variety of molecular operations for creating new molecules. Two types of molecular operations were developed, unimolecular and bimolecular operations. In unimolecular operations, a child molecule can be created from a parent via addition of a functional group, deletion of a fragment, mutation of an atom, etc. In bimolecular operations, children molecules are generated from two parent molecules through combination or crossover (hybridization). These molecular operations are essential for the creation and modification of molecules for the purpose of molecular design. The data structure is capable of representing linear, branched, multifunctional, and multivalent compounds. Algorithms are developed for deriving the molecular data structure of a molecule from its atomic coordinates and vice versa. We show that this new molecular data structure and the developed algorithms, referred to as Molecular Assembling and Representation Suite, allow one to generate a comprehensive library of new molecules via performing every possible molecular structure modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.