Abstract
AbstractIn selective laser melting (SLM), a powdered material is locally melted by a laser and, after cooling, forms a coherent solid structure that enables the production of complex geometries with various materials. The process involves extreme heating and cooling rates and, thus, large temperature gradients, which lead to anisotropic material properties on the macroscopic scale and, in the worst case, reduced mechanical properties. In order to reliably predict the final mechanical component properties, simulations can be performed at different time and length scales. Enormous computational resources are often required to perform such simulations. In order to transform these simulations into suitable surrogate models, the generated data must be compressed and evaluated in a suitable way. This paper shows first preliminary work and a possible new data description of such simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.