Abstract
The results from experimental and theoretical studies of the total and partial cross sections of photoneutron reactions on the 197Au isotope were analyzed. The cross sections for reactions σ(γ, nX) = σ(γ, n) + σ(γ, np) + … + σ(γ, 2nX) = σ(γ, 2n) + σ(γ, 2np) + … were evaluated in the energy range 7 ≤ E γ ≤ 30 MeV using an approach free of the shortcomings of experimental photoneutron multiplicity sorting methods. The total photoneutron reaction cross sections σexp(γ, xn) = σexp(γ, nX) + 2σexp(γ, 2nX) + … = σexp(γ, n) + σexp(γ, np) + 2σexp(γ, 2n) + 2σexp(γ, 2np) + … were used as the initial experimental data. The contributions from the cross sections σ(γ, nX) and σ(γ, 2nX) to the cross sections σexp(γ, xn) were separated using the multiplicity transition functions F 1 theor = σtheor(γ, 1nX)/σtheor(γ, xn) and F 2 theor = σtheor(γ, 2nX)/σtheor(γ, xn), calculated within an updated version of the pre-equilibrium model of photonuclear reactions. New evaluated data for both partial reaction cross sections, i.e., σeval (γ, 1nX) = F 1 theorσexp(γ, xn) and σeval(γ, 2nX) = F 2 theorσexp(γ, xn), were obtained. The cross sections σeval(γ, nX) and σeval.(γ, 2nX) evaluated using the theoretically calculated functions F 1,2 theor are consistent with the Livermore data, but substantially contradict the Saclay data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the Russian Academy of Sciences: Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.