Abstract
This paper proposes a cost-effective simplified Euclid's (SE) algorithm for Reed-Solomon decoders, which can replace the existing modified Euclid's (ME) algorithm. The new proposed SE algorithm, using new initial conditions and polynomials, can significantly reduce the computation complexity compared with the existing ME and reformulated inversionless Berlekamp-Massey (RiBM) algorithms, since it has the least number of coefficients in the new initial conditions. Thus, the proposed SE architecture, consisting of only 3t basic cells, has the smallest area among the existing key solver blocks, where t means the error correction capability. In addition, the SE architecture requires only the latency of 2t clock cycles to solve the key equation without initial latency. The proposed RS decoder has been synthesized using the 0.18 μm Samsung cell library, and the gate count of the RS decoder, excluding FIFO memory, is only 40,136 for the (255, 239, 8) RS code.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.