Abstract
We show that given a harmonic map φ from a Riemann surface to a classical compact simply connected inner symmetric space, there is a J 2-holomorphic twistor lift of φ (or its negative) if and only if it is nilconformal. In the case of harmonic maps of finite uniton number, we give algebraic formulae in terms of holomorphic data which describes their extended solutions. In particular, this gives explicit formulae for the twistor lifts of all harmonic maps of finite uniton number from a surface to the above symmetric spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.