Abstract

Linear complementary-dual (LCD for short) codes are linear codes that intersect with their duals trivially. LCD codes have been used in certain communication systems. It is recently found that LCD codes can be applied in cryptography. This application of LCD codes renewed the interest in the construction of LCD codes having a large minimum distance. Maximum distance separable (MDS) codes are optimal in the sense that the minimum distance cannot be improved for given length and code size. Constructing LCD MDS codes is thus of significance in theory and practice. Recently, Jin constructed several classes of LCD MDS codes through generalized Reed-Solomon codes. In this paper, a different approach is proposed to obtain new LCD MDS codes from generalized Reed-Solomon codes. Consequently, new code constructions are provided and certain previously known results by Jin are extended.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.