Abstract

A time-bound hierarchical key assignment scheme is a method to assign time-dependent encryption keys to a set of classes in a partially ordered hierarchy, in such a way that each class in the hierarchy can compute the keys of all classes lower down in the hierarchy, according to temporal constraints. In this paper we propose new constructions for time-bound hierarchical key assignment schemes which are provably secure with respect to key indistinguishability. Our constructions use as a building block any provably-secure hierarchical key assignment scheme without temporal constraints and exhibit a tradeoff among the amount of private information held by each class, the amount of public data, the complexity of key derivation, and the computational assumption on which their security is based. Moreover, the proposed schemes support updates to the access hierarchy with local changes to public information and without requiring any private information to be re-distributed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.