Abstract

The release of irradiation-produced noble gas isotopes ( 38Ar Cl, 80Kr Br, 128Xe I and 39Ar K) during in vacuo crushing scapolite has been investigated and is compared to quartz. Three thousand crushing strokes released ∼98% of fluid inclusion-hosted noble gas from quartz. In comparison, 3000 crushing strokes released only ∼4% of the lattice-hosted 38Ar Cl from a scapolite gem. In vacuo crushing released lattice Ar preferentially relative to lattice Kr or Xe and prolonged crushing released ∼88% of the lattice-hosted noble gas in 96,000 crushing strokes. We suggest fast diffusion pathways generated by crushing are an important noble gas release mechanism and we demonstrate two applications of prolonged in vacuo crushing on irradiated scapolite. Firstly, scapolite molar Br/Cl and I/Cl values are shown to vary over a similar range as crustal fluids. The Cl-rich scapolite gem from Hunza, Pakistan has Br/Cl of 0.5–0.6 × 10 −3 and I/Cl values of 0.3–2 × 10 −6, that are similar to fluids that have dissolved evaporites. In contrast, three out of four skarn-related scapolites from the Canadian Grenville Province have molar Br/Cl values of 1.5–2.4 × 10 −3, and I/Cl values of 11–24 × 10 −6, that are broadly consistent with skarn formation by magmatic fluids. The fourth Grenvillian scapolite, with only 0.02 wt% Cl, has an exceptionally elevated molar Br/Cl value of up to ∼54 × 10 −3 and I/Cl of 284 × 10 −6. It is unclear if these values reflect the composition of fluids formed during metamorphism or preferential incorporation of Br and I in Cl-poor meionitic scapolite. Secondly, the Grenvillian scapolites give plateau ages of between 830 Ma and 400 Ma. The oldest ages post-date regional skarn formation by ∼200 Myr, but are similar to feldspar cooling ages in the Province. The age variation in these samples is attributed to a combination of factors including variable thermal history and the presence of mineral sub-grains in some of the samples. These sub-grains control the release of 39Ar K, 38Ar Cl and 40Ar∗ during in vacuo crushing as well as the samples 40Ar∗ retentivity in nature. Scapolite is suggested as a possible analogue for K-feldspar in thermochronologic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.