Abstract

Previous studies of Elephant Moraine (EET) 79001 disagreed upon the nature of the magnesian olivine and orthopyroxene grains, and generally considered the formation of EET 79001 at low pressure conditions. New observations on mineral associations, and trace-element abundances of olivine-hosted melt inclusions, in lithology A (EET-A) of EET 79001 lead to new constraints on the formation of this meteorite. The abundances and chondrite-normalized REE pattern of the average melt inclusions in olivine of Mg# 75–61 are similar to those of the bulk-rock composition of lithology A, suggesting that the Mg# <77 olivines are phenocrysts. We also report the widespread occurrence of round orthopyroxene (En78.9–77.9Wo2.2–2.5) inclusions in disequilibrium contact with their olivine hosts (Mg# 73–68). Compositions of these inclusions are similar to xenocrystic cores (Mg# ⩾77; Wo ⩽4) in pyroxene megacrysts. These observations indicate that orthopyroxene xenocrysts were being resorbed while Mg# 77–73 olivine was crystallizing. Combined, these observations suggest that only small portions of the megacrysts are xenocrystic, namely orthopyroxene of Mg# ⩾77 and Wo ⩽4, and possibly also olivine of Mg# ⩾77. The volume percentages of the xenocrystic materials in the rock are small (⩽1vol.% for each mineral). Compositions of the xenocrystic minerals are similar to cores of megacrysts in olivine-phyric shergottite Yamato (Y) 980459 and Northwest Africa (NWA) 5789.Considering the small fraction of xenocrysts and the similarity between REE abundances of the early-trapped melt and those in bulk EET-A, we re-evaluated the possibility that the bulk-rock composition of EET-A is close to that of its parent melt. Results of pMELTS modeling indicate that polybaric crystallization of the EET-A bulk composition (corrected by removal of xenocryst material) can reproduce the crystallization sequence of EET-A, in contrast to the conclusions of previous workers. We estimate that the EET-A parent magma began crystallizing at ∼0.7GPa (∼60km depth), followed a near-isobaric path at 0.5–0.7GPa during crystallization of most olivine and pyroxene megacrysts, and then crystallized at shallower depth during the formation of megacryst rims and groundmass. Combined with recent reports of high-pressure crystallization for three other olivine-phyric samples, our results strongly support the interpretation that these relatively primitive samples may have begun to crystallize at much greater depths than previously inferred, at the base of martian crust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.