Abstract

A detailed understanding of the in-situ stress tensor within energy-rich basins is integral for planning successful drilling completions, evaluating the reactivation potential of sealing faults and developing unconventional plays where fracture stimulation strategies are required to enhance low permeability reservoirs. Newly available leak-off test results interpreted using a new method for analysing leak-off test data constrains the minimal horizontal stress magnitude for the offshore Shipwreck Trough wells to be ∼20 MPa/km, which is similar to the vertical stress magnitude derived from wireline data for depths shallower than ∼2–2.5 km. Breakouts interpreted from image log data reveal a ∼northwest–southeast maximum horizontal stress orientation and formation pressure tests confirm near-hydrostatic conditions for all wells. The new method for analysing leak-off test data has constrained the upper limit of the maximum horizontal stress magnitude to be the greatest, indicating a reverse-to-strike-slip faulting regime, which is consistent with neotectonic faulting evidence. Petrophysical wireline data and image log data to characterise extant natural fracture populations within conventional reservoirs and stratigraphic units that may be exploited as future unconventional reservoirs have also been used. These fracture sets are compared with possible fracture populations recognised in contiguous, high-fidelity 3D seismic datasets using a new method for identifying fracture systems based on attribute mapping techniques. This study represents the first of its kind in the Otway Basin. Combined analysis of the in-situ stress tensor and fracture density and geometries provides a powerful workflow for constraining fracture-related fluid flow pathways in sedimentary basins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.