Abstract

Fluorine and chlorine X‑ray count rates are known to vary significantly during electron probe microanalysis (EPMA) of apatite. Since the rate, timing, and magnitude of this variation are a function of apatite orientation and composition, as well as EPMA operating conditions, this represents a significant problem for volatile element analysis in apatite. Although the effect is thought to be an intrinsic crystallographic response to electron-beam exposure, the mechanisms and causes of the count rate variability remain unclear. We tackle this by examining directly the effects of electron-beam exposure on apatite, by performing secondary ion mass spectrometry (SIMS) depth profiles of points previously subject to electron-beam irradiation. During irradiation of fluorapatite, oriented with the c-axis parallel to the electron beam, halogens become progressively concentrated at the sample surface, even under a relatively low power (15 nA, 10-15 kV) beam. This surface enrichment corresponds to an observed increase in EPMA FKa X‑ray count rates. After prolonged irradiation, the surface region starts to lose halogens and becomes progressively depleted, corresponding with a drop in EPMA count rates. Under normal EPMA operating conditions there is no halogen redistribution in fluorapatite oriented with the c-axis perpendicular to the electron beam, or in chlorapatite. We infer that anionic enrichment results from the migration of halogens away from a center of charge build-up caused by the implantation of electrons from the EPMA beam, assisted by the thermal gradient induced by electron-matter interactions. The process of surface enrichment is best explained by halogen migration through interstitial crystallographic sites in the c-axis channel. This suggests that once the thermal and electric fields are removed, halogens may relax back to their original positions on very long timescales or with sample heating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.