Abstract
As the advent of precision cosmology, the Hubble constant (H 0) inferred from the Lambda Cold Dark Matter fit to the Cosmic Microwave Background data is increasingly in tension with the measurements from the local distance ladder. To approach its real value, we need more independent methods to measure, or to make constraint of, the Hubble constant. In this paper, we apply a plain method, which is merely based on the Friedman-Lemaître-Robertson-Walker cosmology together with geometrical relations, to constrain the Hubble constant by proper motions of radio components observed in AGN twin-jets. Under the assumption that the ultimate ejection strengths in both sides of the twin-jet concerned are intrinsically the same, we obtain a lower limit of H 0,min = 51.5 ± 2.3 km s−1 Mpc−1 from the measured maximum proper motions of the radio components observed in the twin-jet of NGC 1052.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.